Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Functors
idfurcl
Next ⟩
idfu1stalem
Metamath Proof Explorer
Ascii
Unicode
Theorem
idfurcl
Description:
Reverse closure for an identity functor.
(Contributed by
Zhi Wang
, 10-Nov-2025)
Ref
Expression
Assertion
idfurcl
⊢
id
func
⁡
C
∈
D
Func
E
→
C
∈
Cat
Proof
Step
Hyp
Ref
Expression
1
opex
⊢
I
↾
b
z
∈
b
×
b
⟼
I
↾
Hom
⁡
t
⁡
z
∈
V
2
1
csbex
⊢
⦋
Base
t
/
b
⦌
I
↾
b
z
∈
b
×
b
⟼
I
↾
Hom
⁡
t
⁡
z
∈
V
3
df-idfu
⊢
id
func
=
t
∈
Cat
⟼
⦋
Base
t
/
b
⦌
I
↾
b
z
∈
b
×
b
⟼
I
↾
Hom
⁡
t
⁡
z
4
2
3
dmmpti
⊢
dom
⁡
id
func
=
Cat
5
relfunc
⊢
Rel
⁡
D
Func
E
6
0nelrel0
⊢
Rel
⁡
D
Func
E
→
¬
∅
∈
D
Func
E
7
5
6
ax-mp
⊢
¬
∅
∈
D
Func
E
8
4
7
ndmfvrcl
⊢
id
func
⁡
C
∈
D
Func
E
→
C
∈
Cat