Metamath Proof Explorer


Theorem idfurcl

Description: Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Assertion idfurcl id func C D Func E C Cat

Proof

Step Hyp Ref Expression
1 opex I b z b × b I Hom t z V
2 1 csbex Base t / b I b z b × b I Hom t z V
3 df-idfu id func = t Cat Base t / b I b z b × b I Hom t z
4 2 3 dmmpti dom id func = Cat
5 relfunc Rel D Func E
6 0nelrel0 Rel D Func E ¬ D Func E
7 5 6 ax-mp ¬ D Func E
8 4 7 ndmfvrcl id func C D Func E C Cat