Metamath Proof Explorer


Theorem idladdcl

Description: An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypothesis idladdcl.1 G=1stR
Assertion idladdcl RRingOpsIIdlRAIBIAGBI

Proof

Step Hyp Ref Expression
1 idladdcl.1 G=1stR
2 eqid 2ndR=2ndR
3 eqid ranG=ranG
4 eqid GIdG=GIdG
5 1 2 3 4 isidl RRingOpsIIdlRIranGGIdGIxIyIxGyIzranGz2ndRxIx2ndRzI
6 5 biimpa RRingOpsIIdlRIranGGIdGIxIyIxGyIzranGz2ndRxIx2ndRzI
7 6 simp3d RRingOpsIIdlRxIyIxGyIzranGz2ndRxIx2ndRzI
8 simpl yIxGyIzranGz2ndRxIx2ndRzIyIxGyI
9 8 ralimi xIyIxGyIzranGz2ndRxIx2ndRzIxIyIxGyI
10 7 9 syl RRingOpsIIdlRxIyIxGyI
11 oveq1 x=AxGy=AGy
12 11 eleq1d x=AxGyIAGyI
13 oveq2 y=BAGy=AGB
14 13 eleq1d y=BAGyIAGBI
15 12 14 rspc2v AIBIxIyIxGyIAGBI
16 10 15 mpan9 RRingOpsIIdlRAIBIAGBI