Metamath Proof Explorer


Theorem idlmhm

Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypothesis idlmhm.b B=BaseM
Assertion idlmhm MLModIBMLMHomM

Proof

Step Hyp Ref Expression
1 idlmhm.b B=BaseM
2 eqid M=M
3 eqid ScalarM=ScalarM
4 eqid BaseScalarM=BaseScalarM
5 id MLModMLMod
6 eqidd MLModScalarM=ScalarM
7 lmodgrp MLModMGrp
8 1 idghm MGrpIBMGrpHomM
9 7 8 syl MLModIBMGrpHomM
10 1 3 2 4 lmodvscl MLModxBaseScalarMyBxMyB
11 10 3expb MLModxBaseScalarMyBxMyB
12 fvresi xMyBIBxMy=xMy
13 11 12 syl MLModxBaseScalarMyBIBxMy=xMy
14 fvresi yBIBy=y
15 14 ad2antll MLModxBaseScalarMyBIBy=y
16 15 oveq2d MLModxBaseScalarMyBxMIBy=xMy
17 13 16 eqtr4d MLModxBaseScalarMyBIBxMy=xMIBy
18 1 2 2 3 3 4 5 5 6 9 17 islmhmd MLModIBMLMHomM