Metamath Proof Explorer


Theorem idlsrgmulrssin

Description: In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrssin.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgmulrssin.2 B = LIdeal R
idlsrgmulrssin.3 ˙ = S
idlsrgmulrssin.4 φ R CRing
idlsrgmulrssin.5 φ I B
idlsrgmulrssin.6 φ J B
Assertion idlsrgmulrssin φ I ˙ J I J

Proof

Step Hyp Ref Expression
1 idlsrgmulrssin.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgmulrssin.2 B = LIdeal R
3 idlsrgmulrssin.3 ˙ = S
4 idlsrgmulrssin.4 φ R CRing
5 idlsrgmulrssin.5 φ I B
6 idlsrgmulrssin.6 φ J B
7 eqid R = R
8 1 2 3 7 4 5 6 idlsrgmulrss1 φ I ˙ J I
9 4 crngringd φ R Ring
10 1 2 3 7 9 5 6 idlsrgmulrss2 φ I ˙ J J
11 8 10 ssind φ I ˙ J I J