Metamath Proof Explorer
Description: In a commutative ring, the product of two ideals is a subset of their
intersection. (Contributed by Thierry Arnoux, 17-Jun-2024)
|
|
Ref |
Expression |
|
Hypotheses |
idlsrgmulrssin.1 |
|
|
|
idlsrgmulrssin.2 |
|
|
|
idlsrgmulrssin.3 |
|
|
|
idlsrgmulrssin.4 |
|
|
|
idlsrgmulrssin.5 |
|
|
|
idlsrgmulrssin.6 |
|
|
Assertion |
idlsrgmulrssin |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsrgmulrssin.1 |
|
| 2 |
|
idlsrgmulrssin.2 |
|
| 3 |
|
idlsrgmulrssin.3 |
|
| 4 |
|
idlsrgmulrssin.4 |
|
| 5 |
|
idlsrgmulrssin.5 |
|
| 6 |
|
idlsrgmulrssin.6 |
|
| 7 |
|
eqid |
|
| 8 |
1 2 3 7 4 5 6
|
idlsrgmulrss1 |
|
| 9 |
4
|
crngringd |
|
| 10 |
1 2 3 7 9 5 6
|
idlsrgmulrss2 |
|
| 11 |
8 10
|
ssind |
|