Metamath Proof Explorer


Theorem idlsrgmulrssin

Description: In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrssin.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgmulrssin.2 B=LIdealR
idlsrgmulrssin.3 ˙=S
idlsrgmulrssin.4 φRCRing
idlsrgmulrssin.5 φIB
idlsrgmulrssin.6 φJB
Assertion idlsrgmulrssin φI˙JIJ

Proof

Step Hyp Ref Expression
1 idlsrgmulrssin.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgmulrssin.2 B=LIdealR
3 idlsrgmulrssin.3 ˙=S
4 idlsrgmulrssin.4 φRCRing
5 idlsrgmulrssin.5 φIB
6 idlsrgmulrssin.6 φJB
7 eqid R=R
8 1 2 3 7 4 5 6 idlsrgmulrss1 φI˙JI
9 4 crngringd φRRing
10 1 2 3 7 9 5 6 idlsrgmulrss2 φI˙JJ
11 8 10 ssind φI˙JIJ