Metamath Proof Explorer


Theorem idlss

Description: An ideal of R is a subset of R . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlss.1 G=1stR
idlss.2 X=ranG
Assertion idlss RRingOpsIIdlRIX

Proof

Step Hyp Ref Expression
1 idlss.1 G=1stR
2 idlss.2 X=ranG
3 eqid 2ndR=2ndR
4 eqid GIdG=GIdG
5 1 3 2 4 isidl RRingOpsIIdlRIXGIdGIxIyIxGyIzXz2ndRxIx2ndRzI
6 5 biimpa RRingOpsIIdlRIXGIdGIxIyIxGyIzXz2ndRxIx2ndRzI
7 6 simp1d RRingOpsIIdlRIX