Metamath Proof Explorer


Theorem idmatidpmat

Description: The transformed identity matrix is the identity polynomial matrix. (Contributed by AV, 1-Aug-2019) (Proof shortened by AV, 19-Nov-2019)

Ref Expression
Hypotheses idmatidpmat.t T=NmatToPolyMatR
idmatidpmat.p P=Poly1R
idmatidpmat.1 1˙=1NMatR
idmatidpmat.i I=1NMatP
Assertion idmatidpmat RRingNFinT1˙=I

Proof

Step Hyp Ref Expression
1 idmatidpmat.t T=NmatToPolyMatR
2 idmatidpmat.p P=Poly1R
3 idmatidpmat.1 1˙=1NMatR
4 idmatidpmat.i I=1NMatP
5 eqid NMatR=NMatR
6 eqid BaseNMatR=BaseNMatR
7 eqid NMatP=NMatP
8 eqid BaseNMatP=BaseNMatP
9 1 5 6 2 7 8 mat2pmat1 NFinRRingT1NMatR=1NMatP
10 3 fveq2i T1˙=T1NMatR
11 9 10 4 3eqtr4g NFinRRingT1˙=I
12 11 ancoms RRingNFinT1˙=I