| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat2pmatbas.t |
|
| 2 |
|
mat2pmatbas.a |
|
| 3 |
|
mat2pmatbas.b |
|
| 4 |
|
mat2pmatbas.p |
|
| 5 |
|
mat2pmatbas.c |
|
| 6 |
|
mat2pmatbas0.h |
|
| 7 |
|
simpl |
|
| 8 |
|
simpr |
|
| 9 |
2
|
matring |
|
| 10 |
|
eqid |
|
| 11 |
3 10
|
ringidcl |
|
| 12 |
9 11
|
syl |
|
| 13 |
7 8 12
|
3jca |
|
| 14 |
|
eqid |
|
| 15 |
1 2 3 4 14
|
mat2pmatvalel |
|
| 16 |
13 15
|
sylan |
|
| 17 |
|
fvif |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
4 14 18 19
|
ply1scl1 |
|
| 21 |
20
|
ad2antlr |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
4 14 22 23
|
ply1scl0 |
|
| 25 |
24
|
ad2antlr |
|
| 26 |
21 25
|
ifeq12d |
|
| 27 |
17 26
|
eqtrid |
|
| 28 |
7
|
adantr |
|
| 29 |
8
|
adantr |
|
| 30 |
|
simpl |
|
| 31 |
30
|
adantl |
|
| 32 |
|
simpr |
|
| 33 |
32
|
adantl |
|
| 34 |
2 18 22 28 29 31 33 10
|
mat1ov |
|
| 35 |
34
|
fveq2d |
|
| 36 |
4
|
ply1ring |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
|
eqid |
|
| 39 |
5 19 23 28 37 31 33 38
|
mat1ov |
|
| 40 |
27 35 39
|
3eqtr4d |
|
| 41 |
16 40
|
eqtrd |
|
| 42 |
41
|
ralrimivva |
|
| 43 |
1 2 3 4 5 6
|
mat2pmatbas0 |
|
| 44 |
13 43
|
syl |
|
| 45 |
4 5
|
pmatring |
|
| 46 |
6 38
|
ringidcl |
|
| 47 |
45 46
|
syl |
|
| 48 |
5 6
|
eqmat |
|
| 49 |
44 47 48
|
syl2anc |
|
| 50 |
42 49
|
mpbird |
|