Metamath Proof Explorer


Theorem idmgmhm

Description: The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypothesis idmgmhm.b B=BaseM
Assertion idmgmhm MMgmIBMMgmHomM

Proof

Step Hyp Ref Expression
1 idmgmhm.b B=BaseM
2 id MMgmMMgm
3 2 ancri MMgmMMgmMMgm
4 f1oi IB:B1-1 ontoB
5 f1of IB:B1-1 ontoBIB:BB
6 4 5 mp1i MMgmIB:BB
7 eqid +M=+M
8 1 7 mgmcl MMgmaBbBa+MbB
9 8 3expb MMgmaBbBa+MbB
10 fvresi a+MbBIBa+Mb=a+Mb
11 9 10 syl MMgmaBbBIBa+Mb=a+Mb
12 fvresi aBIBa=a
13 fvresi bBIBb=b
14 12 13 oveqan12d aBbBIBa+MIBb=a+Mb
15 14 adantl MMgmaBbBIBa+MIBb=a+Mb
16 11 15 eqtr4d MMgmaBbBIBa+Mb=IBa+MIBb
17 16 ralrimivva MMgmaBbBIBa+Mb=IBa+MIBb
18 6 17 jca MMgmIB:BBaBbBIBa+Mb=IBa+MIBb
19 1 1 7 7 ismgmhm IBMMgmHomMMMgmMMgmIB:BBaBbBIBa+Mb=IBa+MIBb
20 3 18 19 sylanbrc MMgmIBMMgmHomM