Metamath Proof Explorer


Theorem idmon

Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses idmon.b B = Base C
idmon.h H = Hom C
idmon.i 1 ˙ = Id C
idmon.c φ C Cat
idmon.x φ X B
idmon.m M = Mono C
Assertion idmon φ 1 ˙ X X M X

Proof

Step Hyp Ref Expression
1 idmon.b B = Base C
2 idmon.h H = Hom C
3 idmon.i 1 ˙ = Id C
4 idmon.c φ C Cat
5 idmon.x φ X B
6 idmon.m M = Mono C
7 1 2 3 4 5 catidcl φ 1 ˙ X X H X
8 4 adantr φ z B g z H X h z H X C Cat
9 simpr1 φ z B g z H X h z H X z B
10 eqid comp C = comp C
11 5 adantr φ z B g z H X h z H X X B
12 simpr2 φ z B g z H X h z H X g z H X
13 1 2 3 8 9 10 11 12 catlid φ z B g z H X h z H X 1 ˙ X z X comp C X g = g
14 simpr3 φ z B g z H X h z H X h z H X
15 1 2 3 8 9 10 11 14 catlid φ z B g z H X h z H X 1 ˙ X z X comp C X h = h
16 13 15 eqeq12d φ z B g z H X h z H X 1 ˙ X z X comp C X g = 1 ˙ X z X comp C X h g = h
17 16 biimpd φ z B g z H X h z H X 1 ˙ X z X comp C X g = 1 ˙ X z X comp C X h g = h
18 17 ralrimivvva φ z B g z H X h z H X 1 ˙ X z X comp C X g = 1 ˙ X z X comp C X h g = h
19 1 2 10 6 4 5 5 ismon2 φ 1 ˙ X X M X 1 ˙ X X H X z B g z H X h z H X 1 ˙ X z X comp C X g = 1 ˙ X z X comp C X h g = h
20 7 18 19 mpbir2and φ 1 ˙ X X M X