Metamath Proof Explorer


Theorem idmon

Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses idmon.b 𝐵 = ( Base ‘ 𝐶 )
idmon.h 𝐻 = ( Hom ‘ 𝐶 )
idmon.i 1 = ( Id ‘ 𝐶 )
idmon.c ( 𝜑𝐶 ∈ Cat )
idmon.x ( 𝜑𝑋𝐵 )
idmon.m 𝑀 = ( Mono ‘ 𝐶 )
Assertion idmon ( 𝜑 → ( 1𝑋 ) ∈ ( 𝑋 𝑀 𝑋 ) )

Proof

Step Hyp Ref Expression
1 idmon.b 𝐵 = ( Base ‘ 𝐶 )
2 idmon.h 𝐻 = ( Hom ‘ 𝐶 )
3 idmon.i 1 = ( Id ‘ 𝐶 )
4 idmon.c ( 𝜑𝐶 ∈ Cat )
5 idmon.x ( 𝜑𝑋𝐵 )
6 idmon.m 𝑀 = ( Mono ‘ 𝐶 )
7 1 2 3 4 5 catidcl ( 𝜑 → ( 1𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) )
8 4 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐶 ∈ Cat )
9 simpr1 ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑧𝐵 )
10 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
11 5 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑋𝐵 )
12 simpr2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) )
13 1 2 3 8 9 10 11 12 catlid ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = 𝑔 )
14 simpr3 ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ∈ ( 𝑧 𝐻 𝑋 ) )
15 1 2 3 8 9 10 11 14 catlid ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ) = )
16 13 15 eqeq12d ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ) ↔ 𝑔 = ) )
17 16 biimpd ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ) → 𝑔 = ) )
18 17 ralrimivvva ( 𝜑 → ∀ 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ∈ ( 𝑧 𝐻 𝑋 ) ( ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ) → 𝑔 = ) )
19 1 2 10 6 4 5 5 ismon2 ( 𝜑 → ( ( 1𝑋 ) ∈ ( 𝑋 𝑀 𝑋 ) ↔ ( ( 1𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ∧ ∀ 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ∈ ( 𝑧 𝐻 𝑋 ) ( ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = ( ( 1𝑋 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ) → 𝑔 = ) ) ) )
20 7 18 19 mpbir2and ( 𝜑 → ( 1𝑋 ) ∈ ( 𝑋 𝑀 𝑋 ) )