Metamath Proof Explorer


Theorem idompropd

Description: If two structures have the same components (properties), one is a integral domain iff the other one is. See also domnpropd . (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses domnpropd.1 φ B = Base K
domnpropd.2 φ B = Base L
domnpropd.3 φ x B y B x + K y = x + L y
domnpropd.4 φ x B y B x K y = x L y
Assertion idompropd φ K IDomn L IDomn

Proof

Step Hyp Ref Expression
1 domnpropd.1 φ B = Base K
2 domnpropd.2 φ B = Base L
3 domnpropd.3 φ x B y B x + K y = x + L y
4 domnpropd.4 φ x B y B x K y = x L y
5 1 2 3 4 crngpropd φ K CRing L CRing
6 1 2 3 4 domnpropd φ K Domn L Domn
7 5 6 anbi12d φ K CRing K Domn L CRing L Domn
8 isidom K IDomn K CRing K Domn
9 isidom L IDomn L CRing L Domn
10 7 8 9 3bitr4g φ K IDomn L IDomn