Metamath Proof Explorer


Theorem iexpire

Description: _i raised to itself is real. (Contributed by Scott Fenton, 13-Apr-2020)

Ref Expression
Assertion iexpire ii

Proof

Step Hyp Ref Expression
1 ax-icn i
2 ine0 i0
3 cxpef ii0iii=eilogi
4 1 2 1 3 mp3an ii=eilogi
5 logi logi=iπ2
6 5 oveq2i ilogi=iiπ2
7 halfpire π2
8 7 recni π2
9 1 1 8 mulassi iiπ2=iiπ2
10 ixi ii=1
11 10 oveq1i iiπ2=-1π2
12 6 9 11 3eqtr2i ilogi=-1π2
13 12 fveq2i eilogi=e-1π2
14 4 13 eqtri ii=e-1π2
15 neg1rr 1
16 15 7 remulcli -1π2
17 reefcl -1π2e-1π2
18 16 17 ax-mp e-1π2
19 14 18 eqeltri ii