Metamath Proof Explorer


Theorem ifnebib

Description: The converse of ifbi holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnebib ABifφAB=ifψABφψ

Proof

Step Hyp Ref Expression
1 eqif ifφAB=ifψABψifφAB=A¬ψifφAB=B
2 ifnetrue ABifφAB=Aφ
3 2 adantrl ABψifφAB=Aφ
4 simprl ABψifφAB=Aψ
5 3 4 2thd ABψifφAB=Aφψ
6 ifnefals ABifφAB=B¬φ
7 6 adantrl AB¬ψifφAB=B¬φ
8 simprl AB¬ψifφAB=B¬ψ
9 7 8 2falsed AB¬ψifφAB=Bφψ
10 5 9 jaodan ABψifφAB=A¬ψifφAB=Bφψ
11 1 10 sylan2b ABifφAB=ifψABφψ
12 ifbi φψifφAB=ifψAB
13 12 adantl ABφψifφAB=ifψAB
14 11 13 impbida ABifφAB=ifψABφψ