Step |
Hyp |
Ref |
Expression |
1 |
|
eqif |
|- ( if ( ph , A , B ) = if ( ps , A , B ) <-> ( ( ps /\ if ( ph , A , B ) = A ) \/ ( -. ps /\ if ( ph , A , B ) = B ) ) ) |
2 |
|
ifnetrue |
|- ( ( A =/= B /\ if ( ph , A , B ) = A ) -> ph ) |
3 |
2
|
adantrl |
|- ( ( A =/= B /\ ( ps /\ if ( ph , A , B ) = A ) ) -> ph ) |
4 |
|
simprl |
|- ( ( A =/= B /\ ( ps /\ if ( ph , A , B ) = A ) ) -> ps ) |
5 |
3 4
|
2thd |
|- ( ( A =/= B /\ ( ps /\ if ( ph , A , B ) = A ) ) -> ( ph <-> ps ) ) |
6 |
|
ifnefals |
|- ( ( A =/= B /\ if ( ph , A , B ) = B ) -> -. ph ) |
7 |
6
|
adantrl |
|- ( ( A =/= B /\ ( -. ps /\ if ( ph , A , B ) = B ) ) -> -. ph ) |
8 |
|
simprl |
|- ( ( A =/= B /\ ( -. ps /\ if ( ph , A , B ) = B ) ) -> -. ps ) |
9 |
7 8
|
2falsed |
|- ( ( A =/= B /\ ( -. ps /\ if ( ph , A , B ) = B ) ) -> ( ph <-> ps ) ) |
10 |
5 9
|
jaodan |
|- ( ( A =/= B /\ ( ( ps /\ if ( ph , A , B ) = A ) \/ ( -. ps /\ if ( ph , A , B ) = B ) ) ) -> ( ph <-> ps ) ) |
11 |
1 10
|
sylan2b |
|- ( ( A =/= B /\ if ( ph , A , B ) = if ( ps , A , B ) ) -> ( ph <-> ps ) ) |
12 |
|
ifbi |
|- ( ( ph <-> ps ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
13 |
12
|
adantl |
|- ( ( A =/= B /\ ( ph <-> ps ) ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
14 |
11 13
|
impbida |
|- ( A =/= B -> ( if ( ph , A , B ) = if ( ps , A , B ) <-> ( ph <-> ps ) ) ) |