Metamath Proof Explorer


Theorem ifpbi12

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi12 φψχθif-φχτif-ψθτ

Proof

Step Hyp Ref Expression
1 imbi12 φψχθφχψθ
2 1 imp φψχθφχψθ
3 simpl φψχθφψ
4 3 notbid φψχθ¬φ¬ψ
5 4 imbi1d φψχθ¬φτ¬ψτ
6 2 5 anbi12d φψχθφχ¬φτψθ¬ψτ
7 dfifp2 if-φχτφχ¬φτ
8 dfifp2 if-ψθτψθ¬ψτ
9 6 7 8 3bitr4g φψχθif-φχτif-ψθτ