Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
Additional work on conditional logical operator
ifpdfxor
Next ⟩
ifpbi12
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifpdfxor
Description:
Define xor as conditional logic operator.
(Contributed by
RP
, 20-Apr-2020)
Ref
Expression
Assertion
ifpdfxor
⊢
φ
⊻
ψ
↔
if-
φ
¬
ψ
ψ
Proof
Step
Hyp
Ref
Expression
1
xor2
⊢
φ
⊻
ψ
↔
φ
∨
ψ
∧
¬
φ
∧
ψ
2
ifpdfor
⊢
φ
∨
ψ
↔
if-
φ
⊤
ψ
3
ifpnot23
⊢
¬
if-
φ
ψ
⊥
↔
if-
φ
¬
ψ
¬
⊥
4
ifpdfan
⊢
φ
∧
ψ
↔
if-
φ
ψ
⊥
5
3
4
xchnxbir
⊢
¬
φ
∧
ψ
↔
if-
φ
¬
ψ
¬
⊥
6
2
5
anbi12i
⊢
φ
∨
ψ
∧
¬
φ
∧
ψ
↔
if-
φ
⊤
ψ
∧
if-
φ
¬
ψ
¬
⊥
7
ifpan23
⊢
if-
φ
⊤
ψ
∧
if-
φ
¬
ψ
¬
⊥
↔
if-
φ
⊤
∧
¬
ψ
ψ
∧
¬
⊥
8
truan
⊢
⊤
∧
¬
ψ
↔
¬
ψ
9
fal
⊢
¬
⊥
10
9
biantru
⊢
ψ
↔
ψ
∧
¬
⊥
11
10
bicomi
⊢
ψ
∧
¬
⊥
↔
ψ
12
ifpbi23
⊢
⊤
∧
¬
ψ
↔
¬
ψ
∧
ψ
∧
¬
⊥
↔
ψ
→
if-
φ
⊤
∧
¬
ψ
ψ
∧
¬
⊥
↔
if-
φ
¬
ψ
ψ
13
8
11
12
mp2an
⊢
if-
φ
⊤
∧
¬
ψ
ψ
∧
¬
⊥
↔
if-
φ
¬
ψ
ψ
14
7
13
bitri
⊢
if-
φ
⊤
ψ
∧
if-
φ
¬
ψ
¬
⊥
↔
if-
φ
¬
ψ
ψ
15
1
6
14
3bitri
⊢
φ
⊻
ψ
↔
if-
φ
¬
ψ
ψ