Metamath Proof Explorer


Theorem ifpdfxor

Description: Define xor as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfxor φψif-φ¬ψψ

Proof

Step Hyp Ref Expression
1 xor2 φψφψ¬φψ
2 ifpdfor φψif-φψ
3 ifpnot23 ¬if-φψif-φ¬ψ¬
4 ifpdfan φψif-φψ
5 3 4 xchnxbir ¬φψif-φ¬ψ¬
6 2 5 anbi12i φψ¬φψif-φψif-φ¬ψ¬
7 ifpan23 if-φψif-φ¬ψ¬if-φ¬ψψ¬
8 truan ¬ψ¬ψ
9 fal ¬
10 9 biantru ψψ¬
11 10 bicomi ψ¬ψ
12 ifpbi23 ¬ψ¬ψψ¬ψif-φ¬ψψ¬if-φ¬ψψ
13 8 11 12 mp2an if-φ¬ψψ¬if-φ¬ψψ
14 7 13 bitri if-φψif-φ¬ψ¬if-φ¬ψψ
15 1 6 14 3bitri φψif-φ¬ψψ