Metamath Proof Explorer


Theorem ifpimim

Description: Consequnce of implication. (Contributed by RP, 17-Apr-2020)

Ref Expression
Assertion ifpimim if-φψχθτif-φψθif-φχτ

Proof

Step Hyp Ref Expression
1 pm2.521 ¬¬φφφ¬φ
2 1 orim1i ¬¬φφψχφ¬φψχ
3 2 adantr ¬¬φφψχ¬φφθτφ¬φψχ
4 id φφ
5 4 orci φφθχ
6 5 a1i ¬¬φφψχ¬φφθτφφθχ
7 3 6 jca ¬¬φφψχ¬φφθτφ¬φψχφφθχ
8 4 orci φφψτ
9 8 a1i ¬¬φφψχ¬φφθτφφψτ
10 simpr ¬¬φφψχ¬φφθτ¬φφθτ
11 9 10 jca ¬¬φφψχ¬φφθτφφψτ¬φφθτ
12 7 11 jca ¬¬φφψχ¬φφθτφ¬φψχφφθχφφψτ¬φφθτ
13 pm4.81 ¬φφφ
14 13 bicomi φ¬φφ
15 ifpbi1 φ¬φφif-φψχθτif-¬φφψχθτ
16 14 15 ax-mp if-φψχθτif-¬φφψχθτ
17 dfifp4 if-¬φφψχθτ¬¬φφψχ¬φφθτ
18 16 17 bitri if-φψχθτ¬¬φφψχ¬φφθτ
19 ifpim123g if-φψθif-φχτφ¬φψχφφθχφφψτ¬φφθτ
20 12 18 19 3imtr4i if-φψχθτif-φψθif-φχτ