Metamath Proof Explorer


Theorem ifpnot23d

Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnot23d ¬if-φ¬ψ¬χif-φψχ

Proof

Step Hyp Ref Expression
1 ifpnot23 ¬if-φ¬ψ¬χif-φ¬¬ψ¬¬χ
2 notnotb ψ¬¬ψ
3 notnotb χ¬¬χ
4 ifpbi23 ψ¬¬ψχ¬¬χif-φψχif-φ¬¬ψ¬¬χ
5 2 3 4 mp2an if-φψχif-φ¬¬ψ¬¬χ
6 1 5 bitr4i ¬if-φ¬ψ¬χif-φψχ