Metamath Proof Explorer


Theorem ifr0

Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ifr0 IFrAA=

Proof

Step Hyp Ref Expression
1 equid x=x
2 vex xV
3 2 ideq xIxx=x
4 1 3 mpbir xIx
5 frirr IFrAxA¬xIx
6 5 ex IFrAxA¬xIx
7 4 6 mt2i IFrA¬xA
8 7 eq0rdv IFrAA=
9 fr0 IFr
10 freq2 A=IFrAIFr
11 9 10 mpbiri A=IFrA
12 8 11 impbii IFrAA=