Metamath Proof Explorer


Theorem ige2m1fz

Description: Membership in a 0-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018) (Proof shortened by Alexander van der Vekens, 15-Sep-2018)

Ref Expression
Assertion ige2m1fz N02NN10N

Proof

Step Hyp Ref Expression
1 1eluzge0 10
2 fzss1 101N0N
3 1 2 ax-mp 1N0N
4 2z 2
5 4 a1i N02N2
6 nn0z N0N
7 6 adantr N02NN
8 simpr N02N2N
9 eluz2 N22N2N
10 5 7 8 9 syl3anbrc N02NN2
11 ige2m1fz1 N2N11N
12 10 11 syl N02NN11N
13 3 12 sselid N02NN10N