Metamath Proof Explorer


Theorem iineq2d

Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011)

Ref Expression
Hypotheses iineq2d.1 xφ
iineq2d.2 φxAB=C
Assertion iineq2d φxAB=xAC

Proof

Step Hyp Ref Expression
1 iineq2d.1 xφ
2 iineq2d.2 φxAB=C
3 2 ex φxAB=C
4 1 3 ralrimi φxAB=C
5 iineq2 xAB=CxAB=xAC
6 4 5 syl φxAB=xAC