Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iineqconst2
Next ⟩
ZF Set Theory - add the Axiom of Replacement
Metamath Proof Explorer
Ascii
Unicode
Theorem
iineqconst2
Description:
Indexed intersection of identical classes.
(Contributed by
Zhi Wang
, 6-Nov-2025)
Ref
Expression
Assertion
iineqconst2
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
⋂
x
∈
A
B
=
C
Proof
Step
Hyp
Ref
Expression
1
r19.2z
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
∃
x
∈
A
B
=
C
2
eqimss
⊢
B
=
C
→
B
⊆
C
3
2
reximi
⊢
∃
x
∈
A
B
=
C
→
∃
x
∈
A
B
⊆
C
4
iinss
⊢
∃
x
∈
A
B
⊆
C
→
⋂
x
∈
A
B
⊆
C
5
1
3
4
3syl
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
⋂
x
∈
A
B
⊆
C
6
eqimss2
⊢
B
=
C
→
C
⊆
B
7
6
ralimi
⊢
∀
x
∈
A
B
=
C
→
∀
x
∈
A
C
⊆
B
8
7
adantl
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
∀
x
∈
A
C
⊆
B
9
ssiin
⊢
C
⊆
⋂
x
∈
A
B
↔
∀
x
∈
A
C
⊆
B
10
8
9
sylibr
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
C
⊆
⋂
x
∈
A
B
11
5
10
eqssd
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
⋂
x
∈
A
B
=
C