Metamath Proof Explorer


Theorem iineqconst2

Description: Indexed intersection of identical classes. (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Assertion iineqconst2 A x A B = C x A B = C

Proof

Step Hyp Ref Expression
1 r19.2z A x A B = C x A B = C
2 eqimss B = C B C
3 2 reximi x A B = C x A B C
4 iinss x A B C x A B C
5 1 3 4 3syl A x A B = C x A B C
6 eqimss2 B = C C B
7 6 ralimi x A B = C x A C B
8 7 adantl A x A B = C x A C B
9 ssiin C x A B x A C B
10 8 9 sylibr A x A B = C C x A B
11 5 10 eqssd A x A B = C x A B = C