Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Subcategories
iinfconstbaslem
Next ⟩
iinfconstbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
iinfconstbaslem
Description:
Lemma for
iinfconstbas
.
(Contributed by
Zhi Wang
, 1-Nov-2025)
Ref
Expression
Hypotheses
discsubc.j
⊢
J
=
x
∈
S
,
y
∈
S
⟼
if
x
=
y
I
⁡
x
∅
discsubc.b
⊢
B
=
Base
C
discsubc.i
⊢
I
=
Id
⁡
C
discsubc.s
⊢
φ
→
S
⊆
B
discsubc.c
⊢
φ
→
C
∈
Cat
iinfconstbas.a
⊢
φ
→
A
=
Subcat
⁡
C
∩
j
|
j
Fn
S
×
S
Assertion
iinfconstbaslem
⊢
φ
→
J
∈
A
Proof
Step
Hyp
Ref
Expression
1
discsubc.j
⊢
J
=
x
∈
S
,
y
∈
S
⟼
if
x
=
y
I
⁡
x
∅
2
discsubc.b
⊢
B
=
Base
C
3
discsubc.i
⊢
I
=
Id
⁡
C
4
discsubc.s
⊢
φ
→
S
⊆
B
5
discsubc.c
⊢
φ
→
C
∈
Cat
6
iinfconstbas.a
⊢
φ
→
A
=
Subcat
⁡
C
∩
j
|
j
Fn
S
×
S
7
1
2
3
4
5
discsubc
⊢
φ
→
J
∈
Subcat
⁡
C
8
1
discsubclem
⊢
J
Fn
S
×
S
9
8
a1i
⊢
φ
→
J
Fn
S
×
S
10
fneq1
⊢
j
=
J
→
j
Fn
S
×
S
↔
J
Fn
S
×
S
11
7
9
10
elabd
⊢
φ
→
J
∈
j
|
j
Fn
S
×
S
12
7
11
elind
⊢
φ
→
J
∈
Subcat
⁡
C
∩
j
|
j
Fn
S
×
S
13
12
6
eleqtrrd
⊢
φ
→
J
∈
A