Metamath Proof Explorer


Theorem iinfssclem2

Description: Lemma for iinfssc . (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses iinfssc.1 φ A
iinfssc.2 φ x A H cat J
iinfssc.3 φ K = y x A dom H x A H y
iinfssclem1.4 φ x A S = dom dom H
iinfssclem1.5 x φ
Assertion iinfssclem2 φ K Fn x A S × x A S

Proof

Step Hyp Ref Expression
1 iinfssc.1 φ A
2 iinfssc.2 φ x A H cat J
3 iinfssc.3 φ K = y x A dom H x A H y
4 iinfssclem1.4 φ x A S = dom dom H
5 iinfssclem1.5 x φ
6 ovex z H w V
7 6 rgenw x A z H w V
8 iinexg A x A z H w V x A z H w V
9 1 7 8 sylancl φ x A z H w V
10 9 adantr φ z x A S w x A S x A z H w V
11 10 ralrimivva φ z x A S w x A S x A z H w V
12 eqid z x A S , w x A S x A z H w = z x A S , w x A S x A z H w
13 12 fnmpo z x A S w x A S x A z H w V z x A S , w x A S x A z H w Fn x A S × x A S
14 11 13 syl φ z x A S , w x A S x A z H w Fn x A S × x A S
15 1 2 3 4 5 iinfssclem1 φ K = z x A S , w x A S x A z H w
16 15 fneq1d φ K Fn x A S × x A S z x A S , w x A S x A z H w Fn x A S × x A S
17 14 16 mpbird φ K Fn x A S × x A S