Metamath Proof Explorer


Theorem imafi2

Description: The image by a finite set is finite. See also imafi . (Contributed by Thierry Arnoux, 25-Apr-2020)

Ref Expression
Assertion imafi2 A Fin A B Fin

Proof

Step Hyp Ref Expression
1 df-ima A B = ran A B
2 resss A B A
3 ssfi A Fin A B A A B Fin
4 2 3 mpan2 A Fin A B Fin
5 rnfi A B Fin ran A B Fin
6 4 5 syl A Fin ran A B Fin
7 1 6 eqeltrid A Fin A B Fin