Metamath Proof Explorer


Theorem imaidfu2lem

Description: Lemma for imaidfu2 . (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses imaidfu.i I = id func C
imaidfu.d φ I D Func E
Assertion imaidfu2lem φ 1 st I Base D = Base D

Proof

Step Hyp Ref Expression
1 imaidfu.i I = id func C
2 imaidfu.d φ I D Func E
3 eqidd φ Base D = Base D
4 1 2 3 idfu1sta φ 1 st I = I Base D
5 4 imaeq1d φ 1 st I Base D = I Base D Base D
6 ssid Base D Base D
7 resiima Base D Base D I Base D Base D = Base D
8 6 7 ax-mp I Base D Base D = Base D
9 5 8 eqtrdi φ 1 st I Base D = Base D