Metamath Proof Explorer


Theorem imasvsca

Description: The scalar multiplication operation of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φ U = F 𝑠 R
imasbas.v φ V = Base R
imasbas.f φ F : V onto B
imasbas.r φ R Z
imassca.g G = Scalar R
imasvsca.k K = Base G
imasvsca.q · ˙ = R
imasvsca.s ˙ = U
Assertion imasvsca φ ˙ = q V p K , x F q F p · ˙ q

Proof

Step Hyp Ref Expression
1 imasbas.u φ U = F 𝑠 R
2 imasbas.v φ V = Base R
3 imasbas.f φ F : V onto B
4 imasbas.r φ R Z
5 imassca.g G = Scalar R
6 imasvsca.k K = Base G
7 imasvsca.q · ˙ = R
8 imasvsca.s ˙ = U
9 eqid + R = + R
10 eqid R = R
11 eqid Scalar R = Scalar R
12 5 fveq2i Base G = Base Scalar R
13 6 12 eqtri K = Base Scalar R
14 eqid 𝑖 R = 𝑖 R
15 eqid TopOpen R = TopOpen R
16 eqid dist R = dist R
17 eqid R = R
18 eqid + U = + U
19 1 2 3 4 9 18 imasplusg φ + U = p V q V F p F q F p + R q
20 eqid U = U
21 1 2 3 4 10 20 imasmulr φ U = p V q V F p F q F p R q
22 eqidd φ q V p K , x F q F p · ˙ q = q V p K , x F q F p · ˙ q
23 eqidd φ p V q V F p F q p 𝑖 R q = p V q V F p F q p 𝑖 R q
24 eqidd φ TopOpen R qTop F = TopOpen R qTop F
25 eqid dist U = dist U
26 1 2 3 4 16 25 imasds φ dist U = x B , y B sup u ran z w V × V 1 u | F 1 st w 1 = x F 2 nd w u = y v 1 u 1 F 2 nd w v = F 1 st w v + 1 𝑠 * dist R z * <
27 eqidd φ F R F -1 = F R F -1
28 1 2 9 10 11 13 7 14 15 16 17 19 21 22 23 24 26 27 3 4 imasval φ U = Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
29 eqid Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U = Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
30 29 imasvalstr Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U Struct 1 12
31 vscaid 𝑠 = Slot ndx
32 snsstp2 ndx q V p K , x F q F p · ˙ q Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q
33 ssun2 Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q
34 ssun1 Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
35 33 34 sstri Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
36 32 35 sstri ndx q V p K , x F q F p · ˙ q Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx q V p K , x F q F p · ˙ q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
37 fvex Base R V
38 2 37 eqeltrdi φ V V
39 6 fvexi K V
40 snex F q V
41 39 40 mpoex p K , x F q F p · ˙ q V
42 41 rgenw q V p K , x F q F p · ˙ q V
43 iunexg V V q V p K , x F q F p · ˙ q V q V p K , x F q F p · ˙ q V
44 38 42 43 sylancl φ q V p K , x F q F p · ˙ q V
45 28 30 31 36 44 8 strfv3 φ ˙ = q V p K , x F q F p · ˙ q