Metamath Proof Explorer


Theorem imasvsca

Description: The scalar multiplication operation of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
imassca.g G=ScalarR
imasvsca.k K=BaseG
imasvsca.q ·˙=R
imasvsca.s ˙=U
Assertion imasvsca φ˙=qVpK,xFqFp·˙q

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 imassca.g G=ScalarR
6 imasvsca.k K=BaseG
7 imasvsca.q ·˙=R
8 imasvsca.s ˙=U
9 eqid +R=+R
10 eqid R=R
11 eqid ScalarR=ScalarR
12 5 fveq2i BaseG=BaseScalarR
13 6 12 eqtri K=BaseScalarR
14 eqid 𝑖R=𝑖R
15 eqid TopOpenR=TopOpenR
16 eqid distR=distR
17 eqid R=R
18 eqid +U=+U
19 1 2 3 4 9 18 imasplusg φ+U=pVqVFpFqFp+Rq
20 eqid U=U
21 1 2 3 4 10 20 imasmulr φU=pVqVFpFqFpRq
22 eqidd φqVpK,xFqFp·˙q=qVpK,xFqFp·˙q
23 eqidd φpVqVFpFqp𝑖Rq=pVqVFpFqp𝑖Rq
24 eqidd φTopOpenRqTopF=TopOpenRqTopF
25 eqid distU=distU
26 1 2 3 4 16 25 imasds φdistU=xB,yBsupuranzwV×V1u|F1stw1=xF2ndwu=yv1u1F2ndwv=F1stwv+1𝑠*distRz*<
27 eqidd φFRF-1=FRF-1
28 1 2 9 10 11 13 7 14 15 16 17 19 21 22 23 24 26 27 3 4 imasval φU=BasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
29 eqid BasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU=BasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
30 29 imasvalstr BasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistUStruct112
31 vscaid 𝑠=Slotndx
32 snsstp2 ndxqVpK,xFqFp·˙qScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖Rq
33 ssun2 ScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqBasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖Rq
34 ssun1 BasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqBasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
35 33 34 sstri ScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqBasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
36 32 35 sstri ndxqVpK,xFqFp·˙qBasendxB+ndx+UndxUScalarndxScalarRndxqVpK,xFqFp·˙q𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
37 fvex BaseRV
38 2 37 eqeltrdi φVV
39 6 fvexi KV
40 snex FqV
41 39 40 mpoex pK,xFqFp·˙qV
42 41 rgenw qVpK,xFqFp·˙qV
43 iunexg VVqVpK,xFqFp·˙qVqVpK,xFqFp·˙qV
44 38 42 43 sylancl φqVpK,xFqFp·˙qV
45 28 30 31 36 44 8 strfv3 φ˙=qVpK,xFqFp·˙q