Metamath Proof Explorer


Theorem imsxmet

Description: The induced metric of a normed complex vector space is an extended metric space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses imsmet.1 X=BaseSetU
imsmet.8 D=IndMetU
Assertion imsxmet UNrmCVecD∞MetX

Proof

Step Hyp Ref Expression
1 imsmet.1 X=BaseSetU
2 imsmet.8 D=IndMetU
3 1 2 imsmet UNrmCVecDMetX
4 metxmet DMetXD∞MetX
5 3 4 syl UNrmCVecD∞MetX