Metamath Proof Explorer


Theorem ind1a

Description: Value of the indicator function where it is 1 . (Contributed by Thierry Arnoux, 22-Aug-2017)

Ref Expression
Assertion ind1a OVAOXO𝟙OAX=1XA

Proof

Step Hyp Ref Expression
1 indfval OVAOXO𝟙OAX=ifXA10
2 1 eqeq1d OVAOXO𝟙OAX=1ifXA10=1
3 eqid 1=1
4 3 biantru XAXA1=1
5 ax-1ne0 10
6 5 neii ¬1=0
7 6 biorfi XA1=1XA1=11=0
8 6 bianfi 1=0¬XA1=0
9 8 orbi2i XA1=11=0XA1=1¬XA1=0
10 4 7 9 3bitri XAXA1=1¬XA1=0
11 eqif 1=ifXA10XA1=1¬XA1=0
12 eqcom 1=ifXA10ifXA10=1
13 10 11 12 3bitr2ri ifXA10=1XA
14 2 13 bitrdi OVAOXO𝟙OAX=1XA