Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Indicator Functions
indconst0
Next ⟩
indconst1
Metamath Proof Explorer
Ascii
Unicode
Theorem
indconst0
Description:
Indicator of the empty set.
(Contributed by
Thierry Arnoux
, 25-Jan-2026)
Ref
Expression
Assertion
indconst0
⊢
O
∈
V
→
𝟙
O
⁡
∅
=
O
×
0
Proof
Step
Hyp
Ref
Expression
1
0ss
⊢
∅
⊆
O
2
indval2
⊢
O
∈
V
∧
∅
⊆
O
→
𝟙
O
⁡
∅
=
∅
×
1
∪
O
∖
∅
×
0
3
1
2
mpan2
⊢
O
∈
V
→
𝟙
O
⁡
∅
=
∅
×
1
∪
O
∖
∅
×
0
4
0xp
⊢
∅
×
1
=
∅
5
dif0
⊢
O
∖
∅
=
O
6
5
xpeq1i
⊢
O
∖
∅
×
0
=
O
×
0
7
4
6
uneq12i
⊢
∅
×
1
∪
O
∖
∅
×
0
=
∅
∪
O
×
0
8
7
a1i
⊢
O
∈
V
→
∅
×
1
∪
O
∖
∅
×
0
=
∅
∪
O
×
0
9
0un
⊢
∅
∪
O
×
0
=
O
×
0
10
9
a1i
⊢
O
∈
V
→
∅
∪
O
×
0
=
O
×
0
11
3
8
10
3eqtrd
⊢
O
∈
V
→
𝟙
O
⁡
∅
=
O
×
0