| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 |  | 
						
							| 2 |  | inf3lem.2 |  | 
						
							| 3 |  | inf3lem.3 |  | 
						
							| 4 |  | inf3lem.4 |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 |  | suceq |  | 
						
							| 7 | 6 | fveq2d |  | 
						
							| 8 | 5 7 | sseq12d |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 |  | suceq |  | 
						
							| 11 | 10 | fveq2d |  | 
						
							| 12 | 9 11 | sseq12d |  | 
						
							| 13 |  | fveq2 |  | 
						
							| 14 |  | suceq |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 | 13 15 | sseq12d |  | 
						
							| 17 |  | fveq2 |  | 
						
							| 18 |  | suceq |  | 
						
							| 19 | 18 | fveq2d |  | 
						
							| 20 | 17 19 | sseq12d |  | 
						
							| 21 | 1 2 3 3 | inf3lemb |  | 
						
							| 22 |  | 0ss |  | 
						
							| 23 | 21 22 | eqsstri |  | 
						
							| 24 |  | sstr2 |  | 
						
							| 25 | 24 | com12 |  | 
						
							| 26 | 25 | anim2d |  | 
						
							| 27 |  | vex |  | 
						
							| 28 | 1 2 27 3 | inf3lemc |  | 
						
							| 29 | 28 | eleq2d |  | 
						
							| 30 |  | vex |  | 
						
							| 31 |  | fvex |  | 
						
							| 32 | 1 2 30 31 | inf3lema |  | 
						
							| 33 | 29 32 | bitrdi |  | 
						
							| 34 |  | peano2b |  | 
						
							| 35 | 27 | sucex |  | 
						
							| 36 | 1 2 35 3 | inf3lemc |  | 
						
							| 37 | 34 36 | sylbi |  | 
						
							| 38 | 37 | eleq2d |  | 
						
							| 39 |  | fvex |  | 
						
							| 40 | 1 2 30 39 | inf3lema |  | 
						
							| 41 | 38 40 | bitrdi |  | 
						
							| 42 | 33 41 | imbi12d |  | 
						
							| 43 | 26 42 | imbitrrid |  | 
						
							| 44 | 43 | imp |  | 
						
							| 45 | 44 | ssrdv |  | 
						
							| 46 | 45 | ex |  | 
						
							| 47 | 8 12 16 20 23 46 | finds |  |