Metamath Proof Explorer


Theorem inf3lem2

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G=yVwx|wxy
inf3lem.2 F=recGω
inf3lem.3 AV
inf3lem.4 BV
Assertion inf3lem2 xxxAωFAx

Proof

Step Hyp Ref Expression
1 inf3lem.1 G=yVwx|wxy
2 inf3lem.2 F=recGω
3 inf3lem.3 AV
4 inf3lem.4 BV
5 fveq2 v=Fv=F
6 5 neeq1d v=FvxFx
7 6 imbi2d v=xxxFvxxxxFx
8 fveq2 v=uFv=Fu
9 8 neeq1d v=uFvxFux
10 9 imbi2d v=uxxxFvxxxxFux
11 fveq2 v=sucuFv=Fsucu
12 11 neeq1d v=sucuFvxFsucux
13 12 imbi2d v=sucuxxxFvxxxxFsucux
14 fveq2 v=AFv=FA
15 14 neeq1d v=AFvxFAx
16 15 imbi2d v=AxxxFvxxxxFAx
17 1 2 3 4 inf3lemb F=
18 17 eqeq1i F=x=x
19 eqcom =xx=
20 18 19 sylbb F=xx=
21 20 necon3i xFx
22 21 adantr xxxFx
23 vex uV
24 1 2 23 4 inf3lemd uωFux
25 df-pss FuxFuxFux
26 pssnel Fuxvvx¬vFu
27 25 26 sylbir FuxFuxvvx¬vFu
28 ssel xxvxvx
29 eluni vxfvffx
30 28 29 imbitrdi xxvxfvffx
31 eleq2 Fsucu=xfFsucufx
32 31 biimparc fxFsucu=xfFsucu
33 1 2 23 4 inf3lemc uωFsucu=GFu
34 33 eleq2d uωfFsucufGFu
35 elin vfxvfvx
36 vex fV
37 fvex FuV
38 1 2 36 37 inf3lema fGFufxfxFu
39 38 simprbi fGFufxFu
40 39 sseld fGFuvfxvFu
41 35 40 biimtrrid fGFuvfvxvFu
42 34 41 syl6bi uωfFsucuvfvxvFu
43 32 42 syl5 uωfxFsucu=xvfvxvFu
44 43 com23 uωvfvxfxFsucu=xvFu
45 44 exp5c uωvfvxfxFsucu=xvFu
46 45 com34 uωvffxvxFsucu=xvFu
47 46 impd uωvffxvxFsucu=xvFu
48 47 exlimdv uωfvffxvxFsucu=xvFu
49 30 48 sylan9r uωxxvxvxFsucu=xvFu
50 49 pm2.43d uωxxvxFsucu=xvFu
51 id Fsucu=xvFuFsucu=xvFu
52 51 necon3bd Fsucu=xvFu¬vFuFsucux
53 50 52 syl6 uωxxvx¬vFuFsucux
54 53 impd uωxxvx¬vFuFsucux
55 54 exlimdv uωxxvvx¬vFuFsucux
56 27 55 syl5 uωxxFuxFuxFsucux
57 24 56 sylani uωxxuωFuxFsucux
58 57 exp4b uωxxuωFuxFsucux
59 58 pm2.43a uωxxFuxFsucux
60 59 adantld uωxxxFuxFsucux
61 60 a2d uωxxxFuxxxxFsucux
62 7 10 13 16 22 61 finds AωxxxFAx
63 62 com12 xxxAωFAx