Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
|
2 |
|
inf3lem.2 |
|
3 |
|
inf3lem.3 |
|
4 |
|
inf3lem.4 |
|
5 |
|
fveq2 |
|
6 |
5
|
neeq1d |
|
7 |
6
|
imbi2d |
|
8 |
|
fveq2 |
|
9 |
8
|
neeq1d |
|
10 |
9
|
imbi2d |
|
11 |
|
fveq2 |
|
12 |
11
|
neeq1d |
|
13 |
12
|
imbi2d |
|
14 |
|
fveq2 |
|
15 |
14
|
neeq1d |
|
16 |
15
|
imbi2d |
|
17 |
1 2 3 4
|
inf3lemb |
|
18 |
17
|
eqeq1i |
|
19 |
|
eqcom |
|
20 |
18 19
|
sylbb |
|
21 |
20
|
necon3i |
|
22 |
21
|
adantr |
|
23 |
|
vex |
|
24 |
1 2 23 4
|
inf3lemd |
|
25 |
|
df-pss |
|
26 |
|
pssnel |
|
27 |
25 26
|
sylbir |
|
28 |
|
ssel |
|
29 |
|
eluni |
|
30 |
28 29
|
syl6ib |
|
31 |
|
eleq2 |
|
32 |
31
|
biimparc |
|
33 |
1 2 23 4
|
inf3lemc |
|
34 |
33
|
eleq2d |
|
35 |
|
elin |
|
36 |
|
vex |
|
37 |
|
fvex |
|
38 |
1 2 36 37
|
inf3lema |
|
39 |
38
|
simprbi |
|
40 |
39
|
sseld |
|
41 |
35 40
|
syl5bir |
|
42 |
34 41
|
syl6bi |
|
43 |
32 42
|
syl5 |
|
44 |
43
|
com23 |
|
45 |
44
|
exp5c |
|
46 |
45
|
com34 |
|
47 |
46
|
impd |
|
48 |
47
|
exlimdv |
|
49 |
30 48
|
sylan9r |
|
50 |
49
|
pm2.43d |
|
51 |
|
id |
|
52 |
51
|
necon3bd |
|
53 |
50 52
|
syl6 |
|
54 |
53
|
impd |
|
55 |
54
|
exlimdv |
|
56 |
27 55
|
syl5 |
|
57 |
24 56
|
sylani |
|
58 |
57
|
exp4b |
|
59 |
58
|
pm2.43a |
|
60 |
59
|
adantld |
|
61 |
60
|
a2d |
|
62 |
7 10 13 16 22 61
|
finds |
|
63 |
62
|
com12 |
|