Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | inf3lem.1 | |
|
inf3lem.2 | |
||
inf3lem.3 | |
||
inf3lem.4 | |
||
Assertion | inf3lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | |
|
2 | inf3lem.2 | |
|
3 | inf3lem.3 | |
|
4 | inf3lem.4 | |
|
5 | fveq2 | |
|
6 | 5 | neeq1d | |
7 | 6 | imbi2d | |
8 | fveq2 | |
|
9 | 8 | neeq1d | |
10 | 9 | imbi2d | |
11 | fveq2 | |
|
12 | 11 | neeq1d | |
13 | 12 | imbi2d | |
14 | fveq2 | |
|
15 | 14 | neeq1d | |
16 | 15 | imbi2d | |
17 | 1 2 3 4 | inf3lemb | |
18 | 17 | eqeq1i | |
19 | eqcom | |
|
20 | 18 19 | sylbb | |
21 | 20 | necon3i | |
22 | 21 | adantr | |
23 | vex | |
|
24 | 1 2 23 4 | inf3lemd | |
25 | df-pss | |
|
26 | pssnel | |
|
27 | 25 26 | sylbir | |
28 | ssel | |
|
29 | eluni | |
|
30 | 28 29 | imbitrdi | |
31 | eleq2 | |
|
32 | 31 | biimparc | |
33 | 1 2 23 4 | inf3lemc | |
34 | 33 | eleq2d | |
35 | elin | |
|
36 | vex | |
|
37 | fvex | |
|
38 | 1 2 36 37 | inf3lema | |
39 | 38 | simprbi | |
40 | 39 | sseld | |
41 | 35 40 | biimtrrid | |
42 | 34 41 | syl6bi | |
43 | 32 42 | syl5 | |
44 | 43 | com23 | |
45 | 44 | exp5c | |
46 | 45 | com34 | |
47 | 46 | impd | |
48 | 47 | exlimdv | |
49 | 30 48 | sylan9r | |
50 | 49 | pm2.43d | |
51 | id | |
|
52 | 51 | necon3bd | |
53 | 50 52 | syl6 | |
54 | 53 | impd | |
55 | 54 | exlimdv | |
56 | 27 55 | syl5 | |
57 | 24 56 | sylani | |
58 | 57 | exp4b | |
59 | 58 | pm2.43a | |
60 | 59 | adantld | |
61 | 60 | a2d | |
62 | 7 10 13 16 22 61 | finds | |
63 | 62 | com12 | |