Metamath Proof Explorer


Theorem inf3lema

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G=yVwx|wxy
inf3lem.2 F=recGω
inf3lem.3 AV
inf3lem.4 BV
Assertion inf3lema AGBAxAxB

Proof

Step Hyp Ref Expression
1 inf3lem.1 G=yVwx|wxy
2 inf3lem.2 F=recGω
3 inf3lem.3 AV
4 inf3lem.4 BV
5 ineq1 f=Afx=Ax
6 5 sseq1d f=AfxBAxB
7 sseq2 v=BfxvfxB
8 7 rabbidv v=Bfx|fxv=fx|fxB
9 sseq2 y=vwxywxv
10 9 rabbidv y=vwx|wxy=wx|wxv
11 ineq1 w=fwx=fx
12 11 sseq1d w=fwxvfxv
13 12 cbvrabv wx|wxv=fx|fxv
14 10 13 eqtrdi y=vwx|wxy=fx|fxv
15 14 cbvmptv yVwx|wxy=vVfx|fxv
16 1 15 eqtri G=vVfx|fxv
17 vex xV
18 17 rabex fx|fxBV
19 8 16 18 fvmpt BVGB=fx|fxB
20 4 19 ax-mp GB=fx|fxB
21 6 20 elrab2 AGBAxAxB