Metamath Proof Explorer


Theorem infempty

Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion infempty ROrAXAyA¬XRy∃!xAyA¬xRysupAR=X

Proof

Step Hyp Ref Expression
1 df-inf supAR=supAR-1
2 cnvso ROrAR-1OrA
3 brcnvg yAXAyR-1XXRy
4 3 ancoms XAyAyR-1XXRy
5 4 bicomd XAyAXRyyR-1X
6 5 notbid XAyA¬XRy¬yR-1X
7 6 ralbidva XAyA¬XRyyA¬yR-1X
8 7 pm5.32i XAyA¬XRyXAyA¬yR-1X
9 brcnvg yAxAyR-1xxRy
10 9 ancoms xAyAyR-1xxRy
11 10 bicomd xAyAxRyyR-1x
12 11 notbid xAyA¬xRy¬yR-1x
13 12 ralbidva xAyA¬xRyyA¬yR-1x
14 13 reubiia ∃!xAyA¬xRy∃!xAyA¬yR-1x
15 sup0 R-1OrAXAyA¬yR-1X∃!xAyA¬yR-1xsupAR-1=X
16 2 8 14 15 syl3anb ROrAXAyA¬XRy∃!xAyA¬xRysupAR-1=X
17 1 16 eqtrid ROrAXAyA¬XRy∃!xAyA¬xRysupAR=X