Metamath Proof Explorer


Theorem infempty

Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion infempty ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑋 𝑅 𝑦 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ) → inf ( ∅ , 𝐴 , 𝑅 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 df-inf inf ( ∅ , 𝐴 , 𝑅 ) = sup ( ∅ , 𝐴 , 𝑅 )
2 cnvso ( 𝑅 Or 𝐴 𝑅 Or 𝐴 )
3 brcnvg ( ( 𝑦𝐴𝑋𝐴 ) → ( 𝑦 𝑅 𝑋𝑋 𝑅 𝑦 ) )
4 3 ancoms ( ( 𝑋𝐴𝑦𝐴 ) → ( 𝑦 𝑅 𝑋𝑋 𝑅 𝑦 ) )
5 4 bicomd ( ( 𝑋𝐴𝑦𝐴 ) → ( 𝑋 𝑅 𝑦𝑦 𝑅 𝑋 ) )
6 5 notbid ( ( 𝑋𝐴𝑦𝐴 ) → ( ¬ 𝑋 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑋 ) )
7 6 ralbidva ( 𝑋𝐴 → ( ∀ 𝑦𝐴 ¬ 𝑋 𝑅 𝑦 ↔ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) )
8 7 pm5.32i ( ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑋 𝑅 𝑦 ) ↔ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) )
9 brcnvg ( ( 𝑦𝐴𝑥𝐴 ) → ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) )
10 9 ancoms ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) )
11 10 bicomd ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
12 11 notbid ( ( 𝑥𝐴𝑦𝐴 ) → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑥 ) )
13 12 ralbidva ( 𝑥𝐴 → ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )
14 13 reubiia ( ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ↔ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 )
15 sup0 ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = 𝑋 )
16 2 8 14 15 syl3anb ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑋 𝑅 𝑦 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ) → sup ( ∅ , 𝐴 , 𝑅 ) = 𝑋 )
17 1 16 syl5eq ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑋 𝑅 𝑦 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ) → inf ( ∅ , 𝐴 , 𝑅 ) = 𝑋 )