Metamath Proof Explorer


Theorem infmrgelbi

Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum, one-direction version. (Contributed by Stefan O'Rear, 1-Sep-2013) (Revised by AV, 17-Sep-2020)

Ref Expression
Assertion infmrgelbi AABxABxBsupA<

Proof

Step Hyp Ref Expression
1 simpr AABxABxxABx
2 simpl1 AABxABxA
3 simpl2 AABxABxA
4 breq1 z=BzxBx
5 4 ralbidv z=BxAzxxABx
6 5 rspcev BxABxzxAzx
7 6 3ad2antl3 AABxABxzxAzx
8 simpl3 AABxABxB
9 infregelb AAzxAzxBBsupA<xABx
10 2 3 7 8 9 syl31anc AABxABxBsupA<xABx
11 1 10 mpbird AABxABxBsupA<