Metamath Proof Explorer


Theorem infunsdom

Description: The union of two sets that are strictly dominated by the infinite set X is also strictly dominated by X . (Contributed by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion infunsdom X dom card ω X A X B X A B X

Proof

Step Hyp Ref Expression
1 sdomdom A B A B
2 infunsdom1 X dom card ω X A B B X A B X
3 2 anass1rs X dom card ω X B X A B A B X
4 3 adantlrl X dom card ω X A X B X A B A B X
5 1 4 sylan2 X dom card ω X A X B X A B A B X
6 simpll X dom card ω X A X B X X dom card
7 sdomdom B X B X
8 7 ad2antll X dom card ω X A X B X B X
9 numdom X dom card B X B dom card
10 6 8 9 syl2anc X dom card ω X A X B X B dom card
11 sdomdom A X A X
12 11 ad2antrl X dom card ω X A X B X A X
13 numdom X dom card A X A dom card
14 6 12 13 syl2anc X dom card ω X A X B X A dom card
15 domtri2 B dom card A dom card B A ¬ A B
16 10 14 15 syl2anc X dom card ω X A X B X B A ¬ A B
17 16 biimpar X dom card ω X A X B X ¬ A B B A
18 uncom A B = B A
19 infunsdom1 X dom card ω X B A A X B A X
20 18 19 eqbrtrid X dom card ω X B A A X A B X
21 20 anass1rs X dom card ω X A X B A A B X
22 21 adantlrr X dom card ω X A X B X B A A B X
23 17 22 syldan X dom card ω X A X B X ¬ A B A B X
24 5 23 pm2.61dan X dom card ω X A X B X A B X