Metamath Proof Explorer


Theorem infunsdom

Description: The union of two sets that are strictly dominated by the infinite set X is also strictly dominated by X . (Contributed by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion infunsdom XdomcardωXAXBXABX

Proof

Step Hyp Ref Expression
1 sdomdom ABAB
2 infunsdom1 XdomcardωXABBXABX
3 2 anass1rs XdomcardωXBXABABX
4 3 adantlrl XdomcardωXAXBXABABX
5 1 4 sylan2 XdomcardωXAXBXABABX
6 simpll XdomcardωXAXBXXdomcard
7 sdomdom BXBX
8 7 ad2antll XdomcardωXAXBXBX
9 numdom XdomcardBXBdomcard
10 6 8 9 syl2anc XdomcardωXAXBXBdomcard
11 sdomdom AXAX
12 11 ad2antrl XdomcardωXAXBXAX
13 numdom XdomcardAXAdomcard
14 6 12 13 syl2anc XdomcardωXAXBXAdomcard
15 domtri2 BdomcardAdomcardBA¬AB
16 10 14 15 syl2anc XdomcardωXAXBXBA¬AB
17 16 biimpar XdomcardωXAXBX¬ABBA
18 uncom AB=BA
19 infunsdom1 XdomcardωXBAAXBAX
20 18 19 eqbrtrid XdomcardωXBAAXABX
21 20 anass1rs XdomcardωXAXBAABX
22 21 adantlrr XdomcardωXAXBXBAABX
23 17 22 syldan XdomcardωXAXBX¬ABABX
24 5 23 pm2.61dan XdomcardωXAXBXABX