Metamath Proof Explorer


Theorem infxrge0glb

Description: The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses infxrge0glb.a φ A 0 +∞
infxrge0glb.b φ B 0 +∞
Assertion infxrge0glb φ sup A 0 +∞ < < B x A x < B

Proof

Step Hyp Ref Expression
1 infxrge0glb.a φ A 0 +∞
2 infxrge0glb.b φ B 0 +∞
3 iccssxr 0 +∞ *
4 xrltso < Or *
5 soss 0 +∞ * < Or * < Or 0 +∞
6 3 4 5 mp2 < Or 0 +∞
7 6 a1i φ < Or 0 +∞
8 xrge0infss A 0 +∞ x 0 +∞ y A ¬ y < x y 0 +∞ x < y z A z < y
9 1 8 syl φ x 0 +∞ y A ¬ y < x y 0 +∞ x < y z A z < y
10 7 9 1 infglbb φ B 0 +∞ sup A 0 +∞ < < B z A z < B
11 2 10 mpdan φ sup A 0 +∞ < < B z A z < B
12 breq1 x = z x < B z < B
13 12 cbvrexvw x A x < B z A z < B
14 11 13 bitr4di φ sup A 0 +∞ < < B x A x < B