Metamath Proof Explorer


Theorem inintabd

Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Hypothesis inintabd.x φxψ
Assertion inintabd φAx|ψ=w𝒫A|xw=Axψ

Proof

Step Hyp Ref Expression
1 inintabd.x φxψ
2 pm5.5 xψxψuAuA
3 1 2 syl φxψuAuA
4 3 bicomd φuAxψuA
5 4 anbi1d φuAxψuxxψuAxψux
6 elinintab uAx|ψuAxψux
7 elinintrab uVuw𝒫A|xw=AxψxψuAxψux
8 7 elv uw𝒫A|xw=AxψxψuAxψux
9 5 6 8 3bitr4g φuAx|ψuw𝒫A|xw=Axψ
10 9 eqrdv φAx|ψ=w𝒫A|xw=Axψ