Metamath Proof Explorer


Theorem inixp

Description: Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion inixp xABxAC=xABC

Proof

Step Hyp Ref Expression
1 an4 fFnAxAfxBfFnAxAfxCfFnAfFnAxAfxBxAfxC
2 anidm fFnAfFnAfFnA
3 r19.26 xAfxBfxCxAfxBxAfxC
4 elin fxBCfxBfxC
5 4 bicomi fxBfxCfxBC
6 5 ralbii xAfxBfxCxAfxBC
7 3 6 bitr3i xAfxBxAfxCxAfxBC
8 2 7 anbi12i fFnAfFnAxAfxBxAfxCfFnAxAfxBC
9 1 8 bitri fFnAxAfxBfFnAxAfxCfFnAxAfxBC
10 vex fV
11 10 elixp fxABfFnAxAfxB
12 10 elixp fxACfFnAxAfxC
13 11 12 anbi12i fxABfxACfFnAxAfxBfFnAxAfxC
14 10 elixp fxABCfFnAxAfxBC
15 9 13 14 3bitr4i fxABfxACfxABC
16 15 ineqri xABxAC=xABC