Metamath Proof Explorer


Theorem intabs

Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005)

Ref Expression
Hypotheses intabs.1 x=yφψ
intabs.2 x=y|ψφχ
intabs.3 y|ψAχ
Assertion intabs x|xAφ=x|φ

Proof

Step Hyp Ref Expression
1 intabs.1 x=yφψ
2 intabs.2 x=y|ψφχ
3 intabs.3 y|ψAχ
4 sseq1 x=y|ψxAy|ψA
5 4 2 anbi12d x=y|ψxAφy|ψAχ
6 5 3 intmin3 y|ψVx|xAφy|ψ
7 intnex ¬y|ψVy|ψ=V
8 ssv x|xAφV
9 sseq2 y|ψ=Vx|xAφy|ψx|xAφV
10 8 9 mpbiri y|ψ=Vx|xAφy|ψ
11 7 10 sylbi ¬y|ψVx|xAφy|ψ
12 6 11 pm2.61i x|xAφy|ψ
13 1 cbvabv x|φ=y|ψ
14 13 inteqi x|φ=y|ψ
15 12 14 sseqtrri x|xAφx|φ
16 simpr xAφφ
17 16 ss2abi x|xAφx|φ
18 intss x|xAφx|φx|φx|xAφ
19 17 18 ax-mp x|φx|xAφ
20 15 19 eqssi x|xAφ=x|φ