Metamath Proof Explorer


Theorem inuni

Description: The intersection of a union U. A with a class B is equal to the union of the intersections of each element of A with B . (Contributed by FL, 24-Mar-2007)

Ref Expression
Assertion inuni AB=x|yAx=yB

Proof

Step Hyp Ref Expression
1 eluni2 zAyAzy
2 1 anbi1i zAzByAzyzB
3 elin zABzAzB
4 ancom zxyAx=yByAx=yBzx
5 r19.41v yAx=yBzxyAx=yBzx
6 4 5 bitr4i zxyAx=yByAx=yBzx
7 6 exbii xzxyAx=yBxyAx=yBzx
8 rexcom4 yAxx=yBzxxyAx=yBzx
9 7 8 bitr4i xzxyAx=yByAxx=yBzx
10 vex yV
11 10 inex1 yBV
12 eleq2 x=yBzxzyB
13 11 12 ceqsexv xx=yBzxzyB
14 elin zyBzyzB
15 13 14 bitri xx=yBzxzyzB
16 15 rexbii yAxx=yBzxyAzyzB
17 r19.41v yAzyzByAzyzB
18 16 17 bitri yAxx=yBzxyAzyzB
19 9 18 bitri xzxyAx=yByAzyzB
20 2 3 19 3bitr4i zABxzxyAx=yB
21 eluniab zx|yAx=yBxzxyAx=yB
22 20 21 bitr4i zABzx|yAx=yB
23 22 eqriv AB=x|yAx=yB