Metamath Proof Explorer


Theorem invfval

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
invfval.s S=SectC
Assertion invfval φXNY=XSYYSX-1

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 invfval.s S=SectC
7 1 2 3 4 4 6 invffval φN=xB,yBxSyySx-1
8 simprl φx=Xy=Yx=X
9 simprr φx=Xy=Yy=Y
10 8 9 oveq12d φx=Xy=YxSy=XSY
11 9 8 oveq12d φx=Xy=YySx=YSX
12 11 cnveqd φx=Xy=YySx-1=YSX-1
13 10 12 ineq12d φx=Xy=YxSyySx-1=XSYYSX-1
14 ovex XSYV
15 14 inex1 XSYYSX-1V
16 15 a1i φXSYYSX-1V
17 7 13 4 5 16 ovmpod φXNY=XSYYSX-1