Metamath Proof Explorer


Theorem invrcl

Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses invrcl.n N = Inv C
invrcl.f φ F X N Y G
Assertion invrcl φ C Cat

Proof

Step Hyp Ref Expression
1 invrcl.n N = Inv C
2 invrcl.f φ F X N Y G
3 df-br F X N Y G F G X N Y
4 df-ov X N Y = N X Y
5 4 eleq2i F G X N Y F G N X Y
6 3 5 bitri F X N Y G F G N X Y
7 elfvne0 F G N X Y N
8 6 7 sylbi F X N Y G N
9 1 neeq1i N Inv C
10 n0 Inv C x x Inv C
11 9 10 bitri N x x Inv C
12 8 11 sylib F X N Y G x x Inv C
13 df-inv Inv = c Cat x Base c , y Base c x Sect c y y Sect c x -1
14 13 mptrcl x Inv C C Cat
15 14 exlimiv x x Inv C C Cat
16 2 12 15 3syl φ C Cat