Metamath Proof Explorer


Theorem invsym

Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
Assertion invsym φFXNYGGYNXF

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 eqid SectC=SectC
7 1 2 3 4 5 6 isinv φFXNYGFXSectCYGGYSectCXF
8 7 biancomd φFXNYGGYSectCXFFXSectCYG
9 1 2 3 5 4 6 isinv φGYNXFGYSectCXFFXSectCYG
10 8 9 bitr4d φFXNYGGYNXF