Metamath Proof Explorer


Theorem inxprnres

Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019)

Ref Expression
Assertion inxprnres RA×ranRA=xy|xAxRy

Proof

Step Hyp Ref Expression
1 relinxp RelRA×ranRA
2 relopabv Relxy|xAxRy
3 eleq1w x=zxAzA
4 breq1 x=zxRyzRy
5 3 4 anbi12d x=zxAxRyzAzRy
6 breq2 y=wzRyzRw
7 6 anbi2d y=wzAzRyzAzRw
8 5 7 opelopabg zVwVzwxy|xAxRyzAzRw
9 8 el2v zwxy|xAxRyzAzRw
10 brinxprnres wVzRA×ranRAwzAzRw
11 10 elv zRA×ranRAwzAzRw
12 df-br zRA×ranRAwzwRA×ranRA
13 9 11 12 3bitr2ri zwRA×ranRAzwxy|xAxRy
14 1 2 13 eqrelriiv RA×ranRA=xy|xAxRy