Metamath Proof Explorer


Theorem inxpssres

Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019)

Ref Expression
Assertion inxpssres RA×BRA

Proof

Step Hyp Ref Expression
1 ssid AA
2 ssv BV
3 xpss12 AABVA×BA×V
4 1 2 3 mp2an A×BA×V
5 sslin A×BA×VRA×BRA×V
6 4 5 ax-mp RA×BRA×V
7 df-res RA=RA×V
8 6 7 sseqtrri RA×BRA