Metamath Proof Explorer


Theorem ioossioc

Description: An open interval is a subset of its right closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioossioc ABAB

Proof

Step Hyp Ref Expression
1 df-ioo .=x*,y*z*|x<zz<y
2 df-ioc .=x*,y*z*|x<zzy
3 idd A*w*A<wA<w
4 xrltle w*B*w<BwB
5 1 2 3 4 ixxssixx ABAB