Metamath Proof Explorer


Theorem iotabi

Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011)

Ref Expression
Assertion iotabi xφψιx|φ=ιx|ψ

Proof

Step Hyp Ref Expression
1 abbi xφψx|φ=x|ψ
2 1 eqeq1d xφψx|φ=zx|ψ=z
3 2 abbidv xφψz|x|φ=z=z|x|ψ=z
4 3 unieqd xφψz|x|φ=z=z|x|ψ=z
5 df-iota ιx|φ=z|x|φ=z
6 df-iota ιx|ψ=z|x|ψ=z
7 4 5 6 3eqtr4g xφψιx|φ=ιx|ψ